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Abstract—In this paper, we consider reconstructing the 

space-dependent source of a one-dimensional fractional 

diffusion equation by observing the data from the left endpoint. 

First, we analyze the ill-posedness of the problem, and then use 

the Laplace transform and analytical continuation techniques 

to prove the uniqueness of the inverse source problem. Then, 

the inverse source problem is transformed into a variational 

optimization problem by Tikhonov regularization method. The 

gradient of the functional is derived based on the idea of 

variational adjoint method, and then the conjugate gradient 

method is used to solve the problem. Finally, we give several 

numerical examples to show the effectiveness of the proposed 

method. 

 

Index Terms—conjugate gradient algorithm, inverse source 

problem, Laplace transform, Tikhonov regularization, 

uniqueness 

I. INTRODUCTION 

In recent years, many researchers have conducted a lot of 

research on fractional diffusion equations. However, for 

some practical problems, the initial conditions of the research 

object, partial boundary data or source terms are unknown, 

and we hope to reconstruct them by additional observation 

data, which leads to the inverse problem of the fractional 

diffusion equation [1]-[6].Therefore, the research on the 

inverse problem of fractional diffusion equation has very 

important practical significance. 

   There are a lot of valuable research results in the inverse 

problem of fractional diffusion equations. In [7], Xiong and 

Xue proposed a new fractional Tikhonov method to solve an 

inverse source problem for the time-fractional diffusion 

equation with variable coefficients in a general bounded 

domain. Yan and Wei consider an inverse space-dependent 

source problem for a time-fractional diffusion equation by an 

adjoint problem approach, in [8]. In [9],Wang, Zhang and Wu 

turns the inversion source problem into a regular 

optimization problem, and then proposes a non-iterative 

algorithm based on a sequence well-posed direct problems 

solved by the finite element method is proposed for solving 

the optimization problem. Ruan, Yang and Lu reconstructs 

the inverse problem of time fractional diffusion equation into 

an operator equation by Fourier method, and then proposes a 

classical Tikhonov regularization method to solve this 

problem in paper [10]. In order to overcome the ill-posedness 

of the inverse problem of the diffusion equation, Wang and 

Wei proposed a quasi-reversibility method in [11]. There is 

too much research on the inverse problem of diffusion  
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equations [12]-[19], but the above mentioned interesting 

references of inverse problems for diffusion equation 

uniformly take the final observation as the additional data. To 

our knowledge, there is relatively little research on the 

inverse problem for the diffusion equation with the local 

observation data. We consider the following diffusion 

equation in this paper  
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with homogeneous Neumann boundary condition  
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and nonhomogeneous initial condition 

( ,0) ( ), [0, ],u x x x l                                                     (3) 

The following is the definition of the symmetric uniformly 

elliptic operator L  
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1( ) [0, ], ( ) [0, ], ( ) 0, [0, ]a x C l c x C l c x x l     , and there 

exists a constant 0  , such that ( ) , [0, ]a x x l   . 

Here 
t

  denotes the Caputo fractional derivative with 

respect to t  and is defined by 
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We consider the observation data from the left endpoint to 

identify the space-dependent source 

( ) [ ](0, ), [0, ].g t u f t t T                                                     (5) 

In general, measuring error is inevitable, the observation data 

( )g t  contain measurement errors and satisfies 

2 (0, )
( ) ( )

L T
g g                                                           (6) 

where   is the error level. 

As the initial-boundary value problem (1)-(3) is a linear 

system, the principle of superposition is valid. Without 

prejudice to the generality, for the sake of research 

convenience, we assume the initial condition is homogeneous, 

i.e., ( ) 0x  . We organize the rest of the paper as follows, 

in section 2, introduce some preliminary knowledge and 

analyze the ill-posedness of the inversion source problem. 

We prove the uniqueness of the inversion source problem in 

section 3. In section 4, we transform the inversion source 

problem into a Tikhonov regularization optimization problem, 

and the conjugate gradient algorithm is proposed based on the 

variational adjoint technique. Finally, we give some 

numerical examples in section 5. 

Numerical solution of inverse source problem for 

one-dimensional integer/fractional order diffusion 

equation by one point observation data 
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II. PRELIMINARIES AND ILL-POSEDNESS ANALYSIS 

A. Preliminaries 

Throughout this article, we use the following definitions 

and lemmas given in [20] and [21].  

Definition 1. The definition of the two-parameters Mittag - 

Leffler functions is as follows 

,
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where 0, 0    are arbitrary constants. 

Lemma 1. (1) Let 0 1,     be arbitrary constants. 

We suppose that   is such that { , }
2


     . There 

has a constant 0c   such that 
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(3) Let 0 1  , then we have ,10 ( ) 1E t    with any 

t>0. Moreover, ,1( )E t   is completely monotonic function, 

i.e., 

,1( 1) ( ) 0, .
n

n

n

d
E t n

dt
      

As the differentiation operator L  is a symmetric 

uniformly elliptic operator, the spectrum of L  only 

includes the eigenvalues which are counting according to the 

multiplicities. Let { , ( )}, 1,k k x k   ,  be the eigensystem of 

L . Here we take k  satisfying (0) 1k   and set 

2

2

( )
( ) , 1,k k L
x k 


 ‖ ‖ñ . From [22], we see that 0 (1)k c o ñ . 

We know that the sequence 0{ ( )}k kx 

  forms an 

orthonormal basis in 2(0, )L l . We define a fractional power 

( )L   of L  as follow 
2
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where ,      is the scalar product in 2(0, )L l . We know 

that (( ) )D L   is a Hilbert space with the following norm: 
2 1

2 2

(( ) )
1

{ | , | } .k kD L
k k





    





  ‖ ‖                           (8) 

We have 2(( ) ) (0, )D L L l   for 0  . 

In order to analyze the ill-posedness of this problem, we 

define the weak solution to system (1)-(3) as follows. 

Definition 2. Let 2( ) (0, )f x L l , u  is a weak solution to the 

initial-boundary value problem (1)-(3) with 0   if 

(0, ; (( ) ))u C T D L   . 

Lemma 2. Assume 2( ) (0, )f x L l , then the direct problem 

(1)-(3) has a unique weak solution expressed by series 

expression and has the following estimate 

2 2(( ) ) ( ) (0, )
( , ) ( , ) ,0 1.tD L L L l

u t u t Ct f
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Proof . The application variable separation method expresses 

the series solution of the direct problem (1)-(3) as follows 

,1

1

1

(1 ( )) ( ), [0, ], 0,0 1,

( , )

(1 )) ( ), 0, 1.k

k
k k k

k k

tk
k k

k k

f
E t x x l t

u x t
f

e x t







   


  












     


 
   





(10) 

where ( ), ( ) , 1, ,k kf f x x k    . We have 
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Similarly, we have 
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L l
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Through the above definitions and proofs, we know that 

(2.4) is a weak solution of equations (1)-(3). 

B. Ill-posedness Analysis 

In order to prove the ill-posedness of the inverse problem, 

we define a linear operator 
2 2: (0, ) (0, )K L l L T   as follows: 

,1
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Theorem 1.  

The observation operator
2 2: ( ) (0, ) ( ) (0, )K f x L l g t L T    

is compact. 

Proof  . In order to prove that K  is a compact operator, we 

define the finite dimensional operator ,NK  as follows: 

,1

1
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Then, from (2.7) and (2.8) and lemma 1, we obtain 
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By 
2 k k , we know , 0NK K  ‖ ‖  in the sense of operator 

norm in 2( )L   as N  . Therefore, the observation 

operator K  is compact. 

We know that use the observation data ( )g t  in 2(0, )L t  to 

identify space-dependent source ( )f x  in 2(0, )L l  is ill-posed, 

need to consider some regularization methods. Therefore, we 

consider solving the inverse source problem by the Tikhonov 

regularization method in section 4. 

III. UNIQUENESS 

In order to explore the unique theorem of the inverse 

source problem, first we need to prove the following lemmas. 

Lemma 3. Let 2( ) (0, )f x L L , the direct problem (1)-(3) exist 

a unique solution ( , )u x t . Moreover, we have the following 

estimate 

2 2 2(0, ; (0, )) (0, )L T H l L l
u C f‖‖ ‖‖ ,                                            (16) 
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and 

2[0, ; [0, ]] (0, )
.C T C l L l

u C f‖‖ ‖‖                                                  (17) 

Proof  . From the weak solution, we obtain 
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By the Sobolev embedding theorem, we get 
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From the above inequality, we have 2[0, ; [0, ]] (0, )C T C l L l
u C f‖‖ ‖‖ . 

Lemma 4. Assume 2( ) (0, )f x L l , then the source ( )f x  can 

be identified uniquely by the observation data at left end 

point, i.e., ( ) (0, ), [0, ].g t u t t T   

Proof  . By contradiction, we assume there exist two different 

functions, denoting by ( ), 1,2.if x i   The solutions relative to 

1( )f x  and 2( )f x  are expressed as follows 
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Where , ( ), ( ) , 1,2, 1, , .i k i kf f x x i k       For the 

sake of convenience, we only consider the case of 0 1   

in detail. By lemma 3, the two series 
1,
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   are uniformly convergent on 

interval [0,T]. By analytic continuation technique, we know 

that the above two series are uniform convergence on [0, ) . 

By lemma 3, have 
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As tReze  is integral in (0, )t    for fixed z  such that 

Rez>0. Taking Laplace transform with respect to the time 

variable t on the both sides of equation 1 2(0, ) (0, )u t u t , by 

the Lebesgue dominated convergence theorem, we have 
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We know that 
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1

1i k

k
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  is internally closed uniform 

convergence in 
1\ { }k k  

 ‖ . So, applying the 

Weierstrass theorem, we can analytically continue 

,

1

1i k

k

k k k

f


  



 
  in   and (22) holds for 1\ | { }k k  

 ‖ . 

We take a suitable disk which only includes 1  and does not 

include others. Integrating (21) in the disk, we get 

1 1,1 1 2,12 2f f  , which means 1,1 2,1f f , as 1 0  . 

Repeating this procedure, we have 1, 2, , 1,2, .k kf f k   

Therefore, we obtain 1 2( ) ( ), [0, ]f x f x x l  . Analogously, 

we can prove the case of 1  . The proof of the theorem is 

completed. 

IV. VARIATIONAL OPTIMIZATION AND THE CONJUGATE 

GRADIENT METHOD 

Since the inverse source problem is ill-posed, we consider 

using the classical Tikhonov regularization method to deal 

with the problem. Define a Tikhonov regularization 

functional as follows 

2 2(0, ) (0, )

1
( ) ( )

2 2L l L l
J f K f g f




  ‖ ‖ ‖‖                      (23) 

where   is a regularization parameter. Therefore, we 

transform the inverse source problem into the following 

variational optimization problem to solve 

 2 (0, )
min ( )

f L l
J f


                                                                     (24)                                            

In this paper, we use the  conjugate gradient method(CGM) 

to search the minimizer of functional (23). Here we draw the 

functional gradient with the help of the variational adjoint 

method. 

In the following, we formally give the procedure of 

deriving the functional gradient. Let ( )f x  be a small 

perturbation of the space-dependent source ( )f x ,  then the 

small change [ ]( , ) [ ]( , )u f f x t u f x t     of the 

solution to the direct problem (1)-(3) satisfies 
( , )

( )( , ) ( ), (0, ), 0,0 1,

(0, ) ( , ) 0, 0,

( ,0) 0, [0, ].

x t
L x t f x x l t
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t l t t
x x

x x l
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In order to get the gradient of the optimization functional (23), 

we firstly compute the first order variation of functional (23). 

From (23), we have 

2 2
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Let ( , )v x t  be a smooth function, multiplying both side of 
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equation (25) by ( , )v x t  and integrating with respect to the 

temporal-spatial variables on [0, ] [0, ]Q T l  , we have 

0 0

0 0 0

0 0

0 ( ( , ) ( )( , ) ( )) ( , )

1 ( , )
( , ) ( )
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In order to find the gradient of the functional ( )J f , we 

define the adjoint problem as follows 

( , ) ( )( , ), (0, ), 0,0 1,
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[ ](0, ) ( ), 0, 0,

( , ) 0, [0, ].

T v x t L v x t x l t

v t v l t
u f t g t t

x x

v x T x l








     

 

   
 

 


 (28) 

where ( )T y t


  is  the Caputo fractional right derivative 

defined by 
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We can obtain 
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Assume that ( )kf x  is the k  th approximate solution of 

( )f x . Set 

1 , 0,1, ,k k k kf f d k                                               (30) 

where kd  is a descent direction and k  is the step size in the 

k  th iteration. The descent direction of the CGM is updated 

by using the following iteration formula 

1( ) ,k k k kd J f d 
                                                         (31) 

where k   conjugate coefficient computed by 

2

0
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1
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( ( ))
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we have 

0 0

2
2

0 0

( ( ) ) ( )
.

( ( ))

T l

k K k k

k T l

k
k

K f g K d dt f d dx

K d dt d dx
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So, we formulate the inversion algorithm based on the 

CGM to solve the inverse source problem as follows 

 
Algorithm The Conjugate gradient inversion algorithm for the inverse 

source problem 

Step 1 
initialize 

0 0f  , and set 0k  ; 

Step 2 Solve the direct problem (1)-(3) with 
kf f , and calculate 

the residual ( ) ( )k ke K f g t

  ; 

Step 3 Solve the adjoint problem (28) to find the gradient ; 
Step 4 Compute the conjugate coefficient by (32) and the descent 

direction kd  by (31); 

Step 5 
Calculate the sensitivity problem (25) with ( )k kf x d  ; 

Step 6 Compute the optimal step size 
k  by (33); 

Step 7 
Update the initial value 

1kf 
 by (30); 

Step 8 Increase k  by one and return to Step 2, repeat the above 

process until a stopping criterion is satisfied. 

V.  NUMERICAL EXAMPLES 

To verify the validity of the algorithm, several numerical 

examples are given in this section. Without loss of generality, 

we take 1l   for all the numerical simulations. In order to 

obtain (noisy) observation data ( )g t , we obtain it in the 

form of a true solution plus perturbation. That add pointwise 

noise by 
*( ) ( )( )(1 )i ig t K f t

   , where *f  is the true 

source, it  is the discretization time nodal point,   is the 

noise level and   is a uniform random variable in [ 1,1] .  In 

the iteration procedure, we take the well-known Morozovs 

discrepancy principle as the stopping condition, i.e., we 

choose k  satisfying the following inequality:  

1k ke e    

where   is a positive constant. 

Example 1. Let 0.7, ( ) 1, ( ) 0a x c x    . We take 
2( ) ( )f x cos x   as the exact source. The exact solution for 

the direct problem (1)-(3) is 
2

,1( , ) (1 ( ))u x t E t cos x

     . 

Example 2. Let 0.8, ( ) 1, ( ) 0a x c x    . We take 
2 3( ) 3 2f x x x   as the exact source, and have no exact 

solution for the direct problem (1)-(3). 

 

Figure 1: inversion solution for example 1 

 

 

Figure 2: inversion solution for example 2 

 

Example 3. Let 1, ( ) 1, ( ) 0a x c x    . We take 

( ) (2 )f x cos x  as the exact source. The exact solution for 

the direct problem (1)-(3) is ( , ) (1 ) (2 )tu x t e cos x  . 

Example 4. Let 1, ( ) 1, ( ) 0a x c x    . We take 
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2( ) 2 ( )f x x cos x    as the exact source, and have no 

exact solution for the direct problem (1)-(3). 

 

 

Figure 3: inversion solution for example 3 

 

Figure 4: inversion solution for example 4 

 

The above illustration shows the reconstruction of example 

1, 2, 3 and 4. The relative noise levels are also chosen as 

0.1%,0.5%,1%,2%  , we know  the reconstructions are 

reasonable. 

ACKNOWLEDGMENT 

This work is supported by National Natural Science Foun

dation of China (11661004,11861007). 

REFERENCES 

[1] G.Chi, G.Li, X.Jia, Numerical inversions of a source term in the FADE 
with a Dirichlet boundary condition using final observations, 

Comput.Math.Appl. 62(4)(2011)1619–1626. 

[2] D.A.Murio, C.E.Mejia, Source terms identification for time fractional 
diffusion equation, Rev.Colomb.Mat. 42(1)(2008)25–46. 

[3] D.A.Murio, Stable numerical solution of a fractional-diffusion inverse 

heat conduction problem, Comput.Math.Appl. 53(2007)1492–1501. 
[4] Y.Zhang, X.Xu, Inverse source problem for a fractional diffusion 

equation, Inverse Probl. 27(3)(2011)035010. 

[5] G.H.Zheng, T.Wei, Spectral regularization method for a Cauchy 
problem of the time fractional advection–dispersion equation, 

J.Comput.Appl.Math. 233(10)(2010)2631–2640. 

[6] B.Jin, W.Rundell, An inverse problem for a one-dimensional 
time-fractional diffusion problem, Inverse Probl. 28(7)(2012)19. 

[7] X.T.Xiong, X.M.Xue, A fractional Tikhonov regularization method for 

identifying a space-dependent source in the time-fractional diffusion 
equation, Applied Mathematics and Computation. 349(2019)292–303. 

[8] X.B.Yan, T.Wei, Inverse space-dependent source problem for a 

time-fractional diffusion equation by an adjoint problem approach. J. 
Inverse Ill-Posed Probl. 2018; aop. 

[9] Z.W.Wang, W.Zhang, B.Wu, Regularized optimization method for 

determining the space-dependent source in a parabolic equation 
without iteration. Journal of Computational Analysis and Applications, 

June 2016.  

[10] Z.S.Ruan, J.Z.Yang, X.L.Lu, Tikhonov regularisation method for 
simultaneous inversion of the source term and initial data in a 

time-fractional diffusion equation. East Asian Journal on Applied 

Mathematics, Vol.5, No.3, pp.273-300. 
[11] J.G.Wang, T.Wei, Quasi-reversibility method to identify a 

space-dependent source for the time-fractional diffusion equation, 

Appl.Math.Model. 39(2015)6139–6149.  
[12] F.F.Dou, C.L.Fu, F.Yang, Identifying an unknown source term in a 

heat equation, Inverse Probl.Sci.Eng. 17(7)(2009)901–913 . 

[13] J.G.Wang, Y.B.Zhou, T.Wei, A posteriori regularization parameter 
choice rule for the quasi-boundary value method for the backward 

time-fractional diffusion problem, 

Appl.Math.Lett.26(7)(2013)741–747. 
[14] J.G.Wang, Y.B.Zhou, T.Wei, Two regularization methods to identify a 

space-dependent source for the time-fractional diffusion equation, 

Appl.Numer.Math.68(2013)39–57. 
[15] P.Zhuang, F.Liu, Implicit difference approximation for the time 

fractional diffusion equation. Journal of Applied Mathematics and 

Computing, 22(3):87–99, 2006. 
[16] J.Liu, M.Yamamoto, A backward problem for the time-fractional 

diffusion equation, Appl.Anal. 89, 1769-1788(2010). 
[17] R.Metzler, J.Klafter, Boundary value problems for fractional diffusion 

equations, Phys. A. 278,107-125(2000). 

[18] B.Jin, R.William, An inverse problem for a one-dimensional 
time-fractional diffusion problem, Inverse Problems. 

28,075010(2012). 

[19] X.Li, C.Xu, A space-time spectral method for the time-fractional 
diffusion equation, SIAMJ. Num. Anal. 47, 2108-2131(2009). 

[20] H.Pollard, The completely monotonic character of the Mittag-Leffler 

function ( )E x  . Bulletin of the American Mathematical Society, 

1948, 54(12): 1115-1116. 

[21] I.Podlubny, Fractional differential equations: an introduction to 
fractional derivatives, fractional differential equations, to methods of 

their solution and some of their applications, Mathematics in science 

and engineering, 198, San Diego, CA: Academic Press Inc; 1999. 
[22] Levitan B M, Sargsian I S, Sargsjan I S. Introduction to spectral theory: 

selfadjoint ordinary differential operators: Selfadjoint Ordinary 

Differential Operators. American Mathematical Soc., 1975. 


